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Abstract. For supersymmetric gauge theories a consistent regularization scheme that preserves supersym-
metry and gauge invariance is not known. In this article we tackle this problem for supersymmetric QED
within the framework of algebraic renormalization. For practical calculations, a non-invariant regulariza-
tion scheme may be used together with counterterms from all power-counting renormalizable interactions.
From the Slavnov–Taylor identity, expressing gauge invariance, supersymmetry and translational invari-
ance, simple symmetry conditions are derived that are important in a twofold respect: they establish exact
relations between physical quantities that are valid to all orders, and they provide a powerful tool for the
practical determination of the counterterms. We perform concrete one-loop calculations in dimensional
regularization, where supersymmetry is spoiled at the regularized level, and show how the counterterms
necessary to restore supersymmetry can be read off easily. In addition, a specific example is given how the
supersymmetry transformations in one-loop order are modified by non-local terms.

1 Introduction

In phenomenological studies of the electroweak standard
model (SM) and its extensions it is crucial to take into
account radiative corrections. Comparing theoretical pre-
dictions with experimental precision data provides tests
and comparisons of the models at the level of their quan-
tum structure. In particular, as far as collider energies
are too low to produce Higgs or e.g. supersymmetric par-
ticles, this is the only way to obtain information about
such heavy sectors.

The calculation of these radiative corrections involves
a technical problem. The loop integrals are in general di-
vergent and need regularization. But this procedure can
break essential symmetries of the underlying theory, such
as gauge invariance or supersymmetry. The two most im-
portant regularization schemes for the SM and its su-
persymmetric extensions are dimensional regularization
(DReg) [1,2] and dimensional reduction (DRed) [3], the
difference being that in the latter case only the momenta
are treated D-dimensional whereas the vector fields and
γµ matrices are not.

As already noted by the inventor, DRed is inconsis-
tent [4]: it is possible to derive the equation 0 = D(D −
1)(D−2)(D−3)(D−4) in contradiction to regularization
at D 6= 4. On the other hand, DReg breaks supersymme-
try whereas DRed was designed to preserve supersymme-
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try[3,5]. There are many modifications of both schemes;
for example, in [6] a version of DRed was suggested which
is mathematically consistent but not supersymmetric. In
fact, no consistent regularization scheme is known that si-
multaneously preserves supersymmetry and gauge invari-
ance for supersymmetric gauge theories. A similar prob-
lem arises in chiral gauge theories like the standard model.

For practical calculations an invariant scheme is desir-
able. So in most phenomenological applications requiring
supersymmetric calculations schemes such as DRed are
used together with arguments that the inconsistencies do
not show up in the actual cases [7]. But these arguments
have a restricted range of validity, and it is not yet clear if
and how they may be applied to calculations beyond one
loop in the SM and its supersymmetric extensions [8].

In this article we pursue the opposite way: Instead of
searching for an invariant regularization we advocate the
use of arbitrary regularization schemes and define the fi-
nite (renormalized) Green functions by the basic symme-
tries, as it is proposed by the abstract approach of alge-
braic renormalization. (For an introduction to algebraic
renormalization see [9].)

From an abstract point of view, the question of the ex-
istence of a symmetry-preserving scheme is irrelevant. The
theory is defined by symmetry requirements that should
be satisfied after renormalization. There are two equiva-
lent ways to achieve that. The first way is to use an in-
variant scheme keeping the symmetries manifest. In this
case, only those counterterms are necessary for renormal-
ization that themselves preserve the symmetries. These
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are usually just the ones obtained by multiplicative renor-
malization of the parameters and fields in the Lagrangian
of the theory. The second way is to use a non-invariant
scheme and to compensate the corresponding symmetry
breaking by appropriate non-invariant counterterms. Al-
though less obvious, this possibility was noted in many
milestones of renormalization theory, e.g. in [10–12]. Gen-
erally, by using a non-invariant scheme a precise definition
of the symmetries one requires from the renormalized the-
ory is mandatory. In order to establish these symmetries
one has to allow for all possible counterterms, restricted
only by hermiticity, Lorentz invariance and power count-
ing renormalizability, but not by further symmetries.

Of course, if there exists no scheme that keeps the sym-
metries manifest there could be anomalies making it im-
possible to restore the symmetries by adjusting the coun-
terterms. But the absence of anomalies, too, may be proven
without any recurrence to a particular regularization, only
using algebraic properties of the symmetry requirements
[12].

The first algebraic analysis of renormalizability of su-
persymmetric gauge theories was performed in the su-
perspace formalism [13]. For phenomenological applica-
tions it is preferable to use the component formulation
of supersymmetric gauge theories in the Wess–Zumino
gauge, where the unphysical fields are eliminated by the
supersymmetric gauge transformation. Finding a well de-
fined identity expressing the symmetry content of super-
symmetric gauge theories in the Wess–Zumino gauge is
not easy since there the supersymmetry algebra does not
close but also includes gauge transformations (see (5)).
In particular, a separate treatment of gauge invariance
and supersymmetry seems impossible — one would need
infinitely many sources and renormalizability could not
be proven [14]. The solution of this problem was found
in [15,16] combining ideas of Becchi, Rouet and Stora
[12] and Batalin and Vilkovisky [17]. Its essential fea-
tures are the combination of all symmetries into the BRS
transformations, where the algebraic structure is encoded
in the nilpotency of the BRS operator. The correspond-
ing Slavnov–Taylor identity includes all symmetries and
can be used to prove renormalizability of supersymmetric
gauge theories independent of the existence of an invari-
ant regularization scheme [16,18]. The possible anomalies
turn out to be just the supersymmetric extensions of the
usual gauge anomalies and are therefore completely char-
acterized by the gauge structure. Furthermore, in [18] it
was shown that this setup leads to a theory with the ex-
pected physical properties. One can define a set of physical
observables, i.e. gauge invariant operators, and generators
for supersymmetry transformations and translations, and
can prove that the unmodified supersymmetry algebra is
realized on the physical observables.

In this article we consider the supersymmetric exten-
sion of QED (SQED) as a toy model for general super-
symmetric gauge theories and in particular for the super-
symmetric extensions of the standard model. From the
Slavnov–Taylor identity we derive symmetry conditions,
simple identities between renormalized vertex functions.

On the one hand, these conditions are exact physical state-
ments expressing symmetry relations, like mass equali-
ties and charge universality, more immediately. On the
other hand, they are used to simplify and to streamline
the practical determination of counterterms significantly.
As examples we apply these identities to various self en-
ergies and vertex corrections calculated with DReg. We
also examine the effect of “forgetting” a non-invariant but
necessary counterterm. It turns out that in this case the
numerical error can significantly change the result of the
calculation.

The plan of the article is as follows: In Sect. 2 we de-
scribe the classical action of SQED and give its symmetries
in the form of functional identities, which are the Slavnov–
Taylor identity and the gauge Ward identity. In addition,
we derive the invariant counterterms and the correspond-
ing normalization conditions. In Sect. 3 the symmetry
conditions are derived. In Sect. 4 we demonstrate in sev-
eral examples, how non-invariant counterterms appearing
in DReg are identified and removed by the use of sym-
metry identities. The Appendix contains the list of the
conventions used in this article.

2 Definition of the model

2.1 Classical theory

Supersymmetric QED (SQED) [19] is an abelian gauge
theory with the following field content:

1. One vector multiplet (Aµ, λα, λ
α̇
) consisting of the pho-

ton and the photino, described by a vector and a Ma-
jorana spinor field.

2. Two chiral multiplets (ψαL, φL) and (ψαR, φR) with
charges QL = −1, QR = +1, each consisting of one
Weyl spinor and one scalar field, constituting the left-
and right-handed electron and selectron, the matter
fields.

The electron Dirac spinor and the photino Majorana spinor
are given by

Ψ =
(
ψLα

ψ
α̇

R

)
, γ̃ =

(−iλα
iλ
α̇

)
. (1)

The SQED Lagrangian contains kinetic, minimal coupling
and mass terms and in addition, due to the supersymme-
try, coupling terms to the photino and quartic terms in
the selectron fields:

LSQED = −1
4
FµνF

µν +
1
2
γ̃iγµ∂µγ̃

+ |DµφL|2 + |Dµφ
†
R|2 + ΨiγµDµΨ

−
√

2eQL
(
ΨPRγ̃φL − ΨPLγ̃φ

†
R

+φ†
Lγ̃PLΨ − φRγ̃PRΨ

)
− 1

2
(
eQL|φL|2 + eQR|φR|2)2

−mΨΨ −m2(|φL|2 + |φR|2) (2)
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with the gauge covariant derivative and field strength

Dµ = ∂µ + ieQAµ , (3)
Fµν = ∂µAν − ∂νAµ . (4)

The use of this set of physical fields corresponds to
the choice of the Wess–Zumino gauge, where unphysical
fields of the vector supermultiplet are eliminated by gauge
transformations, and the elimination of further auxiliary
fields in the superfield version of SQED. While the former
modifies the supersymmetry algebra by gauge transfor-
mations, the latter contributes terms that vanish only if
the equations of motion hold. In fact, the supersymmetry
generators Qα, Qα̇ satisfy

{Qα, Qα̇} = 2Pµσ
µ
αα̇ + δΛ + eqs. of motion, (5)

where δΛ is an abelian gauge transformation with the
gauge function Λ = −2iAµσ

µ
αα̇. The equations-of-motion

terms appear only when the anticommutator acts on spinor
fields.

2.2 Quantization

For quantizing the supersymmetric extension of QED in
the Wess–Zumino gauge one has to find symmetries which
characterize the classical action and furthermore the one-
particle irreducible (1PI) Green functions summarized in
their generating functional Γ

Γ = Γcl + O(h̄) . (6)

The defining symmetries of the gauge invariant action are
the abelian gauge invariance and N = 1 supersymmetry.
As usual, one has to add to the gauge invariant action
(2) a gauge fixing term which allows to determine a well-
defined photon propagator. The QED gauge fixing, how-
ever, breaks the supersymmetry non-linearly in the prop-
agating fields and cannot be used without modifications
for a higher order construction. To overcome this difficulty
gauge and supersymmetry transformations are included
into one BRS transformation with the respective ghosts
[15,16]. It is then possible to extend the gauge fixing by
a ghost part in such a way that the complete action is
invariant under BRS transformations (cf. (40) and (41)).
Moreover, by transforming also the ghosts appropriately
the algebra of supersymmetry and gauge transformations
is summarized in the nilpotency of the BRS transforma-
tions.

For proving renormalizability it has to be shown that
the Green functions of SQED satisfy the Slavnov–Taylor
identity, which is the functional form of the BRS transfor-
mations, to all orders:

S(Γ ) = 0. (7)

Renormalizability of N=1 supersymmetric gauge theories
in the Wess–Zumino gauge has been proven in [18]. There
and in [16] it has been shown in the framework of algebraic
renormalization that the only possible anomaly appearing

in supersymmetric gauge theories is the supersymmetric
extension of the Adler–Bardeen anomaly. If no anomalies
are present, as it is in QED and SQED, all breakings are
scheme dependent breakings and are removed by adding
appropriate counterterms.

It is a basic fact of renormalized perturbation theory
[10] that by the requirement of unitarity, causality and
Lorentz invariance — leading to the usual Feynman dia-
gram expansion — the higher order contributions to Γ are
not uniquely defined: Given Γ renormalized up to the or-
der h̄n−1, the local contributions in the next order h̄n are
ambiguous. Accordingly, different regularization schemes
used to calculate the Feynman diagrams can differ in the
results for the local contributions, which in general are di-
vergent; the non-local contributions, however, are unique
and finite. That is why the ambiguity inherent in the
renormalization procedure is equivalent to the possibility
to add local counterterms of order h̄n to Γ :

Γ (n) = Γ
(n)
regularized + Γ

(n)
ct . (8)

The divergent parts of the counterterms must cancel the
divergencies of the regularized loop diagrams whereas the
finite parts are generally only restricted by hermiticity,
Lorentz invariance and power counting renormalizability
but otherwise free. All these counterterms may be col-
lected and added to the classical action:

Γ
(≤n)
eff = Γcl +

n∑
m=1

Γ
(m)
ct . (9)

Γeff is the action to be used to derive the Feynman rules
of the next order h̄n+1, thus providing an inductive pro-
cedure.

All conceivable finite counterterms have to be fixed
by the symmetries and by normalization conditions. Pro-
ceeding from the lowest order by induction, all scheme-
dependent breakings of the Slavnov–Taylor identity ∆(n)

appearing in order n have to be absorbed by adjusting the
respective non-invariant counterterms:

S(Γ (≤n−1) + Γ
(n)
regularized + Γ

(n)
ct ) = ∆(n) + sΓclΓ

(n)
ct

= 0 + O(h̄n+1). (10)

(Here sΓcl is the linearized Slavnov–Taylor operator de-
fined in (37).) At the same time this equation fixes unique-
ly all non-invariant counterterms of a specific scheme with-
out referring to invariance properties of the scheme.

Since the construction of supersymmetric gauge theo-
ries in the Wess–Zumino gauge by means of the Slavnov–
Taylor identity has not been applied yet in phenomenolog-
ical calculations, we present the construction of the sym-
metry operators and the ghost action in some detail in the
following part of the paper.

2.3 Symmetry requirements

The BRS formalism encodes the complicated structure of
(5) in the simple equation

s2 = 0 + eqs. of motion (e.o.m.). (11)
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Here s is the generator of BRS transformations given be-
low. In the BRS transformations the Faddeev–Popov ghost
c(x) is used together with space-time independent super-
symmetry and translation ghosts εα, εα̇ and ων as param-
eters. The transformation rules for the ghosts themselves
are given by the structure constants of the symmetry al-
gebra [12]. That yields the following explicit form of the
operator s:

sAµ = ∂µc+ iεσµλ− iλσµε

−iων∂νAµ , (12)

sλα =
i

2
(εσρσ)αFρσ − iεα eQL(|φL|2 − |φR|2)

−iων∂νλα , (13)

sλα̇ =
−i
2

(εσρσ)α̇Fρσ − iεα̇ eQL(|φL|2 − |φR|2)
−iων∂νλα̇ , (14)

sφL = −ieQLc φL +
√

2 εψL − iων∂νφL , (15)

sφ†
L = +ieQLc φ

†
L +

√
2ψLε− iων∂νφ

†
L , (16)

sψαL = −ieQLc ψαL −
√

2 εαmφ†
R −

√
2 i(εσµ)αDµφL

−iων∂νψαL , (17)

sψLα̇ = +ieQLc ψLα̇ +
√

2 εα̇mφR +
√

2 i(εσµ)α̇(DµφL)†

−iων∂νψLα̇ , (18)
sc = 2iεσνεAν − iων∂νc , (19)
sεα = 0 , (20)

sεα̇ = 0 , (21)
sων = 2εσνε , (22)
sc̄ = B − iων∂ν c̄ , (23)
sB = 2iεσνε∂ν c̄− iων∂νB (24)

and corresponding transformations for the right-handed
fields. Here we have introduced also the antighost c̄ and
the auxiliary field B appearing in the gauge fixing in later
course (see (40)).

The symmetries of the classical Lagrangian are sum-
marized in the equation

sΓSQED = 0 (25)

for ΓSQED =
∫
d4xLSQED.

The remaining obstructions are the non-linear BRS
transformations and the eqs.-of-motion terms in the nilpo-
tency of s. Both are overcome by using external fields.
Each non-linear BRS transformation sϕi is coupled to an
external field Yi:

Γext =
∫
d4x
(
Y αλ sλα + Yλα̇sλ

α̇

+ YφLsφL + Yφ†
L
sφ†

L + Y αψLsψLα

+YψL α̇sψ
α̇

L + (L→R)
)
. (26)

The statistics, dimension and ghost number of the Yi is
such that Γext has the same quantum numbers as ΓSQED.
In this way we can use the Yi as sources for the non-linear

BRS transformations and write sϕi = δΓext/δYi, where
the r.h.s. possesses a well-defined extension to higher or-
ders. Moreover, as was realized in [17], it is possible to
extend the classical action by terms bilinear in the sources
that absorb the eqs.-of-motion terms. Hence, the sum

Γcl = ΓSQED + Γext + Γbil , (27)

Γbil =
∫
d4x
(
−(Yλε)(εYλ) − 2(YψLε)(εYψL)

−2(YψRε)(εYψR)
)

(28)

satisfies the Slavnov–Taylor identity

S(Γcl) = 0 . (29)

The Slavnov–Taylor operator acting on a general func-
tional F is defined as

S(F) =
∫
d4x
(
sAµ

δF
δAµ

+ sc
δF
δc

+ sc̄
δF
δc̄

+ sB
δF
δB

+
δF
δYλα

δF
δλα

+
δF
δY α̇

λ

δF
δλα̇

+
δF
δYφL

δF
δφL

+
δF
δYφ†

L

δF
δφ†

L

+
δF

δYψLα

δF
δψαL

+
δF
δY α̇

ψL

δF
δψLα̇

+ (L→R)
)

+ sεα
∂F
∂εα

+ sεα̇
∂F
∂εα̇

+ sων
∂F
∂ων

≡
∫ (

sϕ′
i

δF
δϕ′

i

+
δF
δYi

δF
δϕi

)
. (30)

In the last line a symbolic abbreviation has been intro-
duced in which ϕ′

i runs over all linearly transforming fields
and the global ghosts. The electron contributions to Γext
and S(F) can be written in terms of 4-spinors as

Γext|Ψ =
∫
d4x

(
YΨsΨ + YΨsΨ

)
, (31)

S(F)|Ψ =
∫
d4x
( δF
δYΨ

δF
δΨ

+
δF
δYΨ

δF
δΨ

)
(32)

with the 4-spinors from (1) and

YΨ =
(
YψL

α, YψR α̇

)
, YΨ =

(−YψRα
−YψL α̇

)
, (33)

δ

δYΨ
=
( δ
δYψL

α

δ
δY
ψR

α̇

)
,

δ

δYΨ
=

(
δ

δYψRα
,

δ

δYψL
α̇

)
. (34)

The Slavnov–Taylor identity is the key for solving the
above mentioned problems since it may be extended to
higher orders and it contains both the invariance (25) and
the nilpotency (11): The invariance of ΓSQED is expressed
in the terms without Yj , and the terms linear in the Yj
express the symmetry algebra acting on the corresponding
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fields ϕj :

(Yj)0 :
∫ (

sϕ′
i

δΓSQED

δϕ′
i

+
δΓext

δYi

δΓSQED

δϕi

)
→ sΓSQED = 0 , (35)

(Yj) :
∫ (

sϕ′
i

δΓext

δϕ′
i

+
δΓext

δYi

δΓext

δϕi
+
δΓbil

δYi

δΓSQED

δϕi

)
→ s2ϕj = e.o.m. (36)

The linearized Slavnov–Taylor operator, defined for
bosonic functionals F , is given by

sF =
∫ (

sϕ′
i

δ

δϕ′
i

+
δF
δYi

δ

δϕi
+
δF
δϕi

δ

δYi

)
. (37)

The full Slavnov–Taylor operator and its linearized version
have the nilpotency property

sFS(F) = 0 (38)

if the functional F satisfies the linear identity

iεσµ
δF
δYλ

− i
δF
δYλ

σµε+ iων∂ν(iεσµλ− iλσµε)

−2iεσνεF νµ = 0 , (39)

which is equivalent to nilpotency on Aµ: s2FA
µ = 0. (39)

is satisfied in particular by Γcl.
The gauge fixing term has to be chosen in such a way

that renormalizability by power-counting is ensured. We
define

Γfix =
∫
d4x sΓcl [c̄(∂

µAµ +
ξ

2
B)]

=
∫
d4x
(
B∂µAµ +

ξ

2
B2 − c̄2c

− c̄∂µ(iεσµλ− iλσµε) + ξiεσνε(∂ν c̄)c̄
)

(40)

with a real gauge parameter ξ. This gauge fixing term is
added to the classical action:

Γcl → Γcl + Γfix . (41)

Introducing the gauge fixing in this way the Slavnov–
Taylor identity remains valid. Indeed we see that in addi-
tion to the usual QED gauge fixing and ghost terms, which
break supersymmetry, there arise compensating terms de-
pendent on the constant ghost fields ε, ε.

Symmetry requirements on Γ : The symmetry properties
of Γcl are now imposed as constraints on Γ . In addition to
the Slavnov–Taylor identity several linear equations and
manifest symmetries are imposed. To summarize:
– Slavnov–Taylor identity and nilpotency of sΓ :

S(Γ ) = 0 , (42)
s2ΓA

µ = 0 . (43)

The latter condition is equivalent to (39) for F = Γ ,
and according to (38) it is already sufficient for the
nilpotency relation sΓS(Γ ) = 0.

Table 2. Quantum numbers. Q,Qc, GP, dim denote electrical
and ghost charge, Grassmann parity and the mass dimension,
respectively. The quantum numbers of the sources Yi can be
obtained from the requirement that Γext is neutral, bosonic
and has dim = 4. The commutation rule for two general fields
is χ1χ2 = (−1)GP1GP2χ2χ1

χ xµ Aµ −iλα φL φR ψα
L ψα

R c εα ων c̄ B

Q 0 0 0 −1 +1 −1 +1 0 0 0 0 0
Qc 0 0 0 0 0 0 0 +1 +1 +1 −1 0
GP 0 0 1 0 0 1 1 1 0 1 1 0
dim −1 1 3/2 1 1 3/2 3/2 0 −1/2 −1 2 2

– Gauge fixing condition, ghost equations:

δΓ

δB
=
δΓcl

δB
,

δΓ

δc
=
δΓcl

δc
,

δΓ

δωµ
=
δΓcl

δωµ
,

δΓ

δc̄
=
δΓcl

δc̄
. (44)

It is possible to require that these derivatives do not
receive quantum corrections since they are linear in
the dynamical fields at the classical level. These equa-
tions serve as normalization conditions; their physical
consequences are explained in the next subsection.

– Manifest symmetries: We require Γ to be invariant un-
der the discrete symmetries R,C,CP and to be electri-
cally and ghost charge neutral, Lorentz invariant and
bosonic. The quantum numbers of the fields are de-
termined by the corresponding symmetries of Γcl and
are listed in tab. 1, 2. Note that the usual R-parity is
the same as our R2 and thus less restrictive than our
R. Contrary to the preceding symmetries, we assume
these ones to be manifestly preserved, which is true for
all common regularization schemes.

2.4 Immediate consequences

The conditions for c̄ and B in (44) forbid any quantum
corrections to Γfix and thus play the role of gauge fix-
ing conditions. The ghost equations in (44) for c, ωµ have
a direct physical consequence: They imply, in connection
with the Slavnov–Taylor identity, Ward identities for elec-
trical current conservation and translational invariance.
This can be seen from the following consistency equations
for general bosonic functionals F :

δ

δc
S(F) + sF

δF
δc

= −∂µ δF
δAµ

− iων∂ν
δF
δc

, (45)

δ

δωµ
S(F) + sF

δF
δωµ

= −i
∫

(∂µϕ′
i)
δF
δϕ′

i

, (46)

δ

δc̄
S(F) + sF

δF
δc̄

= −2iεσνε∂ν
δF
δB

− iων∂ν
δF
δc̄

,(47)

δ

δB
S(F) − sF

δF
δB

=
δF
δc̄

+ iων∂ν
δF
δB

. (48)
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Table 1. Discrete symmetries. The transformation rules for the sources Yi

can be deduced from the requirement that Γext is invariant and the trans-
formation rules for the complex conjugate fields are obvious except for the
CP conjugation of the spinors. We define for χ ∈ {λ, ψL, ψR, ε} :

χα CP→ aχα̇ ⇒ χα̇

CP→ −a∗χα , χα
CP→ −aχα̇ , χα̇ CP→ a∗χα .

χ xµ Aµ −iλα φL φR ψα
L ψα

R c εα ων c̄ B

Rχ xµ Aµ −λα −iφL −iφR ψα
L ψα

R c −iεα ων c̄ B

Cχ xµ −Aµ iλα φR φL ψα
R ψα

L −c εα ων −c̄ −B
CPχ (Px)µ −(PA)µ −λα̇ φ†

L φ†
R iψLα̇ iψRα̇ −c −iεα̇ (Pω)ν −c̄ −B

For F = Γ and S(Γ ) = 0 the first two equations lead to
the announced Ward identities:

∂µ
δΓ

δAµ
= −iewemΓ − 2B + O(ω) , (49)

wem = QL

(
φL

δ

δφL
− YφL

δ

δYφL
+ ψL

δ

δψL
− YψL

δ

δYψL

− φ†
L

δ

δφ†
L

+ Yφ†
L

δ

δYφ†
L

− ψL
δ

δψL
− YψL

δ

δYψL

)
+ (L→R) (50)

and

0 =
∫
d4x
(
∂µϕ

′
i

δΓ

δϕ′
i

+ ∂µϕi
δΓ

δϕi
+ ∂µYi

δΓ

δYi

)
. (51)

The ω-dependent terms in the electromagnetic Ward iden-
tity (49) arise because translations do not commute with
local gauge transformations.

Conversely, if the Ward identities and the linear
eqs. (43), (44) hold, the consistency equations yield

δ

δc
S(Γ ) =

δ

δων
S(Γ ) =

δ

δc̄
S(Γ ) =

δ

δB
S(Γ ) = 0 . (52)

In this case, therefore, the Slavnov–Taylor identity can not
be broken by terms depending on c, ων , c̄, B.

2.5 Most general symmetric counterterms

The symmetry requirements fix Γ up to additive sym-
metric counterterms in each order. To find the symmetric
counterterms we take two solutions Γ and Γ̃ = Γ + ζΓsym
of the symmetry requirements at first order in the in-
finitesimal parameter ζ and calculate the most general
counterterms Γsym. The requirements that the Slavnov–
Taylor identity (42) is satisfied at first order in ζ can be
cast into the form

sΓclΓsym =
∫ (

sϕ′
i

δΓsym

δϕ′
i

+
δΓcl

δYi

δΓsym

δϕi
+
δΓsym

δYi

δΓcl

δϕi

)
= 0 , (53)

and (44) prevents a dependence of Γsym on B, c, ων , c̄. The
solution reads

Γsym =
[
δZmm

∂

∂m

+
1
2
δZγ

(
−e ∂

∂e
+ 2ξ

∂

∂ξ

+
∫
d4x
(
Aµ

δ

δAµ
+ λα

δ

δλα
− Yλ

α δ

δYλα

+ λα̇
δ

δλα̇
− Yλα̇

δ

δYλα̇

+ c
δ

δc
− c̄

δ

δc̄
−B

δ

δB

))
+

1
2
δZφ

∫
d4x
(
φL

δ

δφL
− YφL

δ

δYφL

+ φR
δ

δφR
− YφR

δ

δYφR

+ φ†
L

δ

δφ†
L

− Yφ†
L

δ

δYφ†
L

+ φ†
R

δ

δφ†
R

− Yφ†
R

δ

δYφ†
R

)

+
1
2
δZΨ

∫
d4x
(
Ψ
δ

δΨ
− YΨ

δ

δYΨ

+ Ψ
δ

δΨ
− YΨ

δ

δYΨ

)]
Γcl (54)

with four free constants δZm, δZγ , δZφ, δZΨ . The con-
dition for δΓ

δc in (44) and the Ward identity (49) result
in e being the effective charge in the Thomson limit (see
Sect. 3.3) and thus prevent an independent charge renor-
malization. The action of this differential operator on the
classical action just corresponds to a multiplicative renor-
malization of the parameters and fields appearing therein.
That means that after restoring the symmetries all diver-
gencies from the loop diagrams may be absorbed by re-
definitions of the parameters and fields appearing in Γcl,
which is the usual understanding of multiplicative renor-
malizability.

2.6 Normalization conditions

To fix the remaining ambiguity of the symmetric counter-
terms we impose the usual normalization conditions1 for
QED. These are on-shell normalization conditions for the
mass parameter and the photon self energy, and condi-
tions at an arbitrary scale κ for the normalization of the

1 In the literature also labeled as “renormalization condi-
tions”.
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matter self energies:2

ΓφLφ†
L
(−p, p) = 0 for p2 = m2 , (55)

lim
p2→0

1
p2ΓAµAν (−p, p)|gµν−part = −gµν , (56)

∂

∂p2ΓφLφ†
L
(−p, p) = 1 for p2 = κ2 , (57)

ΓV (p2) + 2m2(Γ ′
V (p2) − Γ ′

S(p2)) = 1 for p2 = κ2 . (58)

Here we have used a covariant decomposition for the elec-
tron self energy:

ΓΨΨ (p,−p) = /pΓV (p2) −mΓS(p2) (59)

with scalar functions ΓV,S . Since these normalization con-
ditions have a unique classical (i.e. tree level) solution,
they fix Γ uniquely to all orders.

We did not require the residua of the matter propaga-
tors to be unity on-shell. It is useful to define the functions

Zφ(p2) =
(
∂p2ΓφLφ†

L
(−p, p)

)−1
, (60)

ZΨ (p2) =
(
ΓV (p2) + 2m2(Γ ′

V (p2) − Γ ′
S(p2))

)−1
. (61)

They approach the usual (infrared divergent) Z factors
in the limit p2 → m2 and appear in the LSZ reduction
formula as wave function renormalization factors:

Sfi = lim
p2→m2

(
iZφ

−1/2(p2)(−p2 +m2) . . .

〈0|Tφ . . . |0〉(p, . . .)) . (62)

For the present paper they play a role in the symmetry
conditions derived in the next section.

3 Symmetry conditions

The Slavnov–Taylor identity (42) is a complicated non-
linear equation for the effective action with an enormous
information content. In this section we will show that it
is possible to obtain much simpler symmetry conditions
as a consequence of the Slavnov–Taylor identity and the
normalization conditions. One virtue of these symmetry
conditions is that they are well suited for practical applica-
tions. Together with the normalization conditions and the
conditions in (43), (44) they form a complete set of simple
identities that determine the counterterms of all power-
counting renormalizable interactions. A similar strategy
was applied by [20] in the context of the abelian Higgs-
Kibble model.

We begin this section with a particularly simple sym-
metry condition, to illustrate our general method. This
example also shows that is useful to divide the symmetry
conditions into two parts: the ones for vertex functions
containing external sources, expressing the higher order

2 κ2 = m2 would lead to infrared divergences in the normal-
ization conditions.

modifications to the symmetry transformations, and the
ones for the vertex functions for physical fields.

Let us make some remarks on our notation and con-
ventions. The manifest symmetries are always implicitly
used, in particular R-parity violating vertex functions are
not mentioned and the conditions involving one selectron
field are only given for one of the fields φL, φR, φ†

L, φ†
R.

Since it is easier to work with fields of a definite R-parity
the 2-spinors λ, λ, ε, ε and the 4-spinors Ψ, Ψ are used dur-
ing the derivations and only for the final results either a
pure 2-spinor or a pure 4-spinor notation is chosen. Most
of the following identities stem from some derivative of the
Slavnov–Taylor identity δS(Γ )/δχ1 . . . δχn = 0, leading to
products of the form

Γχ1...χmYi(p1, . . . , pm,−p)
×Γχm+1...χnϕi(pm+1, . . . , pn, p) (63)

with p = p1 + . . .+pm = −pm+1 − . . .−pn due to momen-
tum conservation. The definition of the vertex functions
is given in app. A.2. Because this structure is general, the
momenta in the arguments are not always written down
explicitly.

3.1 Electron–selectron mass identity

The normalization condition

ΓφLφ†
L
(−p, p) = 0 for p2 = m2 (64)

defines m to be the physical selectron mass. Using the
Slavnov–Taylor identity we will now prove the following
symmetry condition:

ΓΨΨ (p,−p)u(p) = 0 for p2 = m2 , (65)

where u(p) is a spinor satisfying the Dirac equation (/p −
m)u(p) = 0. Physically this means that m is equal to the
physical electron mass, and thus the electron and selectron
masses are equal.

The strategy for the proofs of the symmetry conditions
is first to obtain identities between vertex functions in
the usual way taking suitable derivatives of the Slavnov–
Taylor identity and setting all fields to zero afterwards.
These non-linear identities can then be solved for particu-
lar vertex functions and further simplified if one evaluates
them at the special momenta of the normalization condi-
tions.

Since the condition we want to prove is due to super-
symmetry, we use one derivative with respect to ε:

∂

∂ε

δ2

δφ†
L(−p)δΨ(p)

S(Γ )|ϕi=Yi=0 = 0 . (66)

After setting all fields to zero most of the terms vanish
due to charge non-conservation, and only two terms con-
tribute:

ΓΨεYφL (p,−p)Γφ†
L
φL

(−p, p)
+Γφ†

L
εY
Ψ

(−p, p)ΓΨΨ (p,−p) = 0 . (67)
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For p2 = m2 the normalization condition (64) and Γφ†
L
εY
Ψ6= 0 show that the spinor matrix ΓΨΨ (p,−p) has the eigen-

value zero and thus cannot be invertible. Since it must be
built out of the covariants 1 and /p it can only be pro-
portional to (/p−m) or (/p+m). Taking into account the
lowest order result the second possibility is excluded and
the announced result (65) follows.

3.2 Higher order supersymmetry

Eq. (67) exhibits a general feature of the equations derived
below, namely the appearance of prefactors that are them-
selves vertex functions with external sources and ghost
fields, reflecting the non-linearity of the Slavnov–Taylor
identity. Their physical meaning is to represent renormal-
ized higher order corrections to the symmetry transfor-
mations coupled to the sources in Γext, which will be ex-
plained in more detail in Sect. 4.5. It is necessary to derive
symmetry conditions for such vertex functions before we
are able to derive further identities for vertex functions
involving only physical fields.

In fact, all vertex functions involving external c or ωµ
ghosts — expressing the exact gauge transformations and
translations — are already fixed to all orders by the re-
quirements in (44). The vertex functions involving exter-
nal ε ghosts and Y fields express the supersymmetry trans-
formations. They may acquire higher order corrections,
but it is still possible to derive symmetry conditions con-
straining these modifications because the symmetry alge-
bra is fixed to all orders.

First we derive the supersymmetry transformations of
the photino, i.e. the vertex functions with external ε and
Yλ. There are only three terms of dimension ≤ 4 possible:
YλεA

µ, Yλε|φL,R|2, YλεYλε and their CP-conjugates. To
constrain the first one we use the nilpotency on Aµ, which
expresses the supersymmetry algebra:

0 =
∂2

∂ε∂ε

δ

δAρ
s2ΓA

µ (68)

⇒ 0 = iΓAρεβYλασ
µ

αβ̇
+ iσµβα̇ΓAρεβ̇Y

λα̇

+ 2/pββ̇gρ
µ − 2pµσρββ̇ . (69)

The first line contains products of the transformation of
the photon into a photino and vice versa, the second line
a sum of a translation and a gauge transformation. The
explicit σ matrices originate from ∂2

∂ε∂λ
sAµ and h.c., and

the terms in the second line from the BRS transformations
of the ω and c ghosts in sAµ. All terms are fixed except
for the ones containing Yλ, Yλ. Taking into account the
Ward identity (49), leading to pρΓAρεYλ = 0, implies in
connection with CP invariance:

ΓAµεβYλα(p,−p) = pρ(σρµ)βα . (70)

Next we use the supersymmetry algebra acting on λ, which
is expressed in the Slavnov–Taylor identity by the terms
proportional to εεYλ:

0 =
∂2

∂ε∂ε

δ2

δλδYλ
S(Γ ) (71)

⇒ 0 = ∂2(sAµ)
∂λ∂ε ΓεYλAµ + ΓεεYλYλΓλλ

+∂2(sωµ)
∂ε∂ε ΓλYλωµ . (72)

The only unknown here is the vertex function with two
external sources corresponding to an eqs.-of-motion term
in the algebra (5). Solving (72) yields

Γεβ̇εβYλγYλ
γ̇ (p,−p)Γλαλγ̇ (−p, p) = δβ

γ/pβ̇α . (73)

For the supersymmetry transformation of the photino into
|φL,R|2 we derive the equation

0 =
∂

∂ε

δ3

δφ†
LδφLδλ

S(Γ ) (74)

⇒ 0 = ∂2(sAµ)
∂λ∂ε

Γφ†
L
φLAµ

+ Γφ†
L
φLεYλ

Γλλ

+Γφ†
L
εY
Ψ

ΓφLλΨ . (75)

For pλ = 0 this equation may be used to determine ΓφLλΨ
(see (102)), for pλ 6= 0 it may be used as a symmetry
condition for Γφ†

L
φLεYλ

.
Now we proceed with symmetry conditions for the su-

persymmetry transformations of the matter fields. While
the mass identity (67) fixes the ratio of the supersymmetry
transformations φ ↔ Ψ , the supersymmetry algebra

0 =
∂2

∂ε∂ε

δ2

δφLδYφL
S(Γ ) (76)

⇒ 0 = ΓYφLεεYφ†
L

ΓφLφ†
L

+ ΓφLεYΨΓεYφLΨ

+∂2(sωµ)
∂ε∂ε ΓφLYφLωµ (77)

fixes the product. For on-shell momentum the eqs.-of-
motion term vanishes and (77) reduces to

2/pββ̇ = Γ
φLε

β̇YΨ
(p,−p)ΓεβYφLΨ (−p, p) for p2 = m2 .(78)

Solving for the individual vertex functions is best done
using the covariant decompositions

Γ
φLε

β̇Y
ψR

α̇
(p,−p) = −

√
2Θ1(p2)mδα̇β̇ , (79)

Γ
φLε

β̇YψL
α(p,−p) = −

√
2Θ2(p2)/pαβ̇ (80)

with Θ1(m2) = Θ2(m2) due to (67), (65). The results are
the following symmetry conditions:

for p2 = m2 :

Γ
φLε

β̇YψL
α(p,−p) = −

√
2/pαβ̇ Θ , (81)

Γ
φLε

β̇Y
ψR

α̇
(p,−p) = −

√
2mδα̇β̇ Θ , (82)

/pαβ̇ΓψLαεβYφL (p,−p) = −mΓψRβ̇εβYφL (p,−p)

−
√

2/pββ̇
1
Θ
, (83)

Θ = lim
p2→m2

√
Zψ(p2)/Zφ(p2). (84)



W. Hollik et al.: Renormalization and symmetry conditions in supersymmetric QED 373

Using these results together with the gauge covariance of
the supersymmetry transformation of ψL

0 =
∂

∂εβ̇
δ3

δcδφLδY αψL
S(Γ ) (85)

then yields

qµΓ
AµφLε

β̇Y α
ψL

(q, p, p′) =
√

2eQL/qαβ̇ Θ

for p2 = p′2 = m2 . (86)

Finally we determine the coefficient of the eqs.-of-motion
term in the supersymmetry algebra acting on ψL, given
by ΓεεYψLYψL

:

0 =
∂2

∂ε∂ε

δ2

δψLδYψL
S(Γ ) (87)

⇒ 0 = Γ
εβεβ̇Y γ

ψL
Y δ̇
ψL

ΓψLαψLδ̇
+ Γ

εβεβ̇Y γ
ψL
YψRδ

ΓψLαψδR

ΓψLαεβYφLΓY γψLε
β̇φL

+ Γ
ψLαε

β̇Y
φ

†
R

ΓY γ
ψL
εβφ†

R

− 2/pββ̇δ
γ
α . (88)

Since all other vertex functions of dimension ≤ 4 have
already been fixed, this identity can be viewed as a sym-
metry condition for ΓεεYψLYψL

.

3.3 Physical conditions

In addition to the mass equality from Sect. 3.1 here we de-
rive further symmetry conditions for physical vertex func-
tions. Thereby we make use of the conditions derived in
Sect. 3.2, expressing the higher order modifications to the
supersymmetry transformations, and of the requirements
(44), (49) that there are no higher order corrections to
gauge transformations.

Due to supersymmetry, the photon and photino self
energies are related:

0 =
∂

∂ε

δ2

δAρδλ
S(Γ ) (89)

⇒ 0 = ∂2(sAµ)
∂λ∂ε

ΓAρAµ + ΓAρεYλΓλλ . (90)

The prefactor ΓAρεYλ , expressing the supersymmetry
transformation of the photino, is determined to all orders
by (70) and thus

σµβα̇ΓAρAµ(p,−p) = −ipν(σνρ)βαΓλα̇λα(−p, p) . (91)

We can use this identity together with the normalization
condition (56) and the symmetry condition (73) to get
simpler conditions:

Γ
λ
α̇
λα

(−p, p) = /pαα̇ for p2 = 0 , (92)

Γεβ̇εβYλγYλ
γ̇ (p,−p) = δβ̇ γ̇δβ

γ for p2 = 0 . (93)

Using suitable derivatives of the Ward identity (49) we
find that gauge invariance restricts the remaining power-
counting renormalizable photon and photino interactions:

0 = pµΓAρAµ(−p, p) , (94)
0 = pµΓAρAσAµ(p′,−p− p′, p) , (95)
0 = pµΓAρAσAνAµ(p′, p′′,−p− p′ − p′′, p) , (96)
0 = pµΓλλAµ(p

′,−p− p′, p) . (97)

Similarly, gauge invariance (49) yields symmetry con-
ditions for the photon–matter interactions, in particular

qµΓΨΨAµ(p, p
′, q) = −eQL

(
ΓΨΨ (−p′, p′)

−ΓΨΨ (p,−p)) . (98)

Taking the derivative with respect to qµ at q = 0 and the
limit p2 → m2 and multiplying with spinors satisfying the
Dirac equation (/p−m)u(p) = 0, yields the Thomson-limit
condition

ū(p)ZΨΓΨΨAµ(p,−p, 0)u(p) = ū(p) (−eQLγµ)u(p)
for p2 = m2 . (99)

Thomson-limit conditions for the photon–selectron inter-
actions may be obtained in the same way:

ZφΓφLφ†
L
Aµ(p,−p, 0) = −2eQLpµ

for p2 = m2 , (100)
ZφΓφLφ†

L
AνAµ(p,−p, 0, 0) = 2(eQL)2gµν

for p2 = m2 . (101)

The functions ZΨ (p2), Zφ(p2) have been defined in (60),
(61). For brevity the momentum arguments have been
suppressed. Instead of gauge invariance, supersymmetry is
responsible for a Thomson-limit condition for the photino–
matter interaction. Using (75) for pλ = 0 together with
(100) and (81), (82) it can be derived either in terms of
2-spinors:√

ZφZΨ

(
Γφ†

L
ψLαλβ

(−p, p, 0)/pαβ̇

+ Γ
φ†
L
ψ
α̇

Rλ
β (−p, p, 0)mδα̇

β̇

)
= −i

√
2eQL/pββ̇

for p2 = m2 , (102)

or of 4-spinors:√
ZφZΨΓφ†

L
Ψγ̃(−p, p, 0)u(p) = −

√
2eQLPLu(p)

for p2 = m2 . (103)

The remaining power-counting renormalizable interactions
are the four-scalar interactions. Supersymmetry relates
them to the photino–matter interaction and thus to the
gauge coupling in the following way:

0 =
∂

∂ε

δ4

δφ†
LδφLδφ

†
LδψL

S(Γ ) (104)

⇒ 0 = 2Γφ†
L
φLεYλ

Γφ†
L
ψLλ

+ 2ΓφLφ†
L
ψLεYφL

Γφ†
L
φL

+ Γφ†
L
φ†
L
ψLεY

φ
†
L

ΓφLφ†
L

+ ΓψLεYφLΓφ†
L
φLφ

†
L
φL

+ Γφ†
L
φLφ

†
L
εY
Ψ

ΓψLΨ + 2Γφ†
L
εY
Ψ

Γφ†
L
φLψLΨ

, (105)
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0 =
∂

∂ε

δ4

δφ†
RδφRδφ

†
LδψL

S(Γ ) (106)

⇒ 0 = Γφ†
R
φRεYλ

Γφ†
L
ψLλ

+ ΓφRφ†
R
ψLεYφL

Γφ†
L
φL

+ ΓφRφ†
L
ψLεYφR

Γφ†
R
φR

+ Γφ†
L
φ†
R
ψLεY

φ
†
R

ΓφRφ†
R

+ ΓψLεYφLΓφ†
R
φRφ

†
L
φL

+ Γφ†
R
φRφ

†
L
εY
Ψ

ΓψLΨ

+ Γφ†
L
εY
Ψ

Γφ†
R
φRψLΨ

+ Γφ†
R
εYΨ

Γφ†
L
φRψLΨ

, (107)

0 =
∂

∂ε

δ4

δφLδφRδφRδψL
S(Γ ) (108)

⇒ 0 = 2ΓφLφRεYλΓφRψLλ + 2ΓφRφLψLεY
φ

†
R

ΓφRφ†
R

+ ΓφRφRψLεY
φ

†
L

ΓφLφ†
L

+ ΓψLεYφLΓφLφRφRφL

+ ΓφLφRφRεYΨΓψLΨ . (109)

The momentum arguments in these terms are dropped
(see explanation at the beginning of this section). The
factors 2 in front of several terms imply symmetrization
with respect to the momenta of the two φ†

L and φR fields,
respectively. These equations constitute symmetry con-
ditions for Γφ†

L
φLφ

†
L
φL

, Γφ†
R
φRφ

†
L
φL

and ΓφRφRφLφL , since
these are the only power-counting renormalizable vertex
functions not yet determined.

3.4 Collection of all symmetry
and normalization conditions

We now list all symmetry and normalization conditions
for an easy reference and to make transparent the sim-
ilarity in their mathematical structure. Taking into ac-
count also (43), (44) and the manifest symmetries there
is a condition for each vertex function corresponding to a
power-counting renormalizable interaction.

Photon and photino only:

lim
p2→0

1
p2ΓAµAν (−p, p)|gµν−part = −gµν , (110)

Γ
λ
α̇
λα

(−p, p) = /pαα̇
for p2 = 0 , (111)

pµΓAρAµ(−p, p) = 0 , (112)
pµΓAρAσAµ(p′,−p− p′, p) = 0 , (113)
pµΓAρAσAνAµ(p′, p′′,−p− p′ − p′′, p)= 0 , (114)
pµΓλλAµ(p

′,−p− p′, p) = 0 , (115)

Interactions involving matter fields:

ΓφLφ†
L
(−p, p) = 0

for p2 = m2 , (116)

ΓΨΨ (p,−p)u(p) = 0

for p2 = m2 , (117)
∂

∂p2ΓφLφ†
L
(−p, p) = 1

for p2 = κ2 , (118)
ΓV (p2) + 2m2(Γ ′

V (p2) + Γ ′
S(p2)) = 1

for p2 = κ2 , (119)

ZφΓφLφ†
L
Aµ(p,−p, 0) = −2eQLpµ

for p2 = m2 , (120)
ZφΓφLφ†

L
AνAµ(p,−p, 0, 0) = 2(eQL)2gµν

for p2 = m2 , (121)
ū(p)ZΨΓΨΨAµ(p,−p, 0)u(p) = ū(p) (−eQLγµ)u(p)

for p2 = m2 , (122)√
ZφZΨΓφ†

L
Ψγ̃(−p, p, 0)u(p) = −

√
2eQLPLu(p)

for p2 = m2 , (123)

0 = 2Γφ†
L
φLεYλ

Γφ†
L
ψLλ

+ 2ΓφLφ†
L
ψLεYφL

Γφ†
L
φL

+ Γφ†
L
φ†
L
ψLεY

φ
†
L

ΓφLφ†
L

+ ΓψLεYφLΓφ†
L
φLφ

†
L
φL

+ Γφ†
L
φLφ

†
L
εY
Ψ

ΓψLΨ + 2Γφ†
L
εY
Ψ

Γφ†
L
φLψLΨ

, (124)

0 = Γφ†
R
φRεYλ

Γφ†
L
ψLλ

+ ΓφRφ†
R
ψLεYφL

Γφ†
L
φL

+ ΓφRφ†
L
ψLεYφR

Γφ†
R
φR

+ Γφ†
L
φ†
R
ψLεY

φ
†
R

ΓφRφ†
R

+ ΓψLεYφLΓφ†
R
φRφ

†
L
φL

+ Γφ†
R
φRφ

†
L
εY
Ψ

ΓψLΨ

+ Γφ†
L
εY
Ψ

Γφ†
R
φRψLΨ

+ Γφ†
R
εYΨ

Γφ†
L
φRψLΨ

, (125)

0 = 2ΓφLφRεYλΓφRψLλ + 2ΓφRφLψLεY
φ

†
R

ΓφRφ†
R

+ ΓφRφRψLεY
φ

†
L

ΓφLφ†
L

+ ΓψLεYφLΓφLφRφRφL

+ ΓφLφRφRεYΨΓψLΨ , (126)

Interactions involving ghost fields:

ΓAµεβYλα(p,−p) = pρ(σρµ)βα , (127)

Γεβ̇εβYλγYλ
γ̇ (p,−p) = δβ̇ γ̇δβ

γ

for p2 = 0 , (128)
−Γφ†

L
φLεYλ

Γλλ = ΓλεYAµΓφ†
L
φLAµ

+Γφ†
L
εY
Ψ

ΓφLλΨ , (129)

Γ
φLε

β̇YψL
α(p,−p) = −

√
2/pαβ̇ Θ

for p2 = m2 , (130)

Γ
φLε

β̇Y
ψR

α̇
(p,−p) = −

√
2mδα̇β̇ Θ

for p2 = m2 , (131)
/pαβ̇ΓψLαεβYφL (p,−p) = −mΓψRβ̇εβYφL (p,−p)
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−
√

2/pββ̇
1
Θ

for p2 = m2 , (132)

qµΓ
AµφLε

β̇Y α
ψL

(q, p, p′) =
√

2eQL/qαβ̇ Θ

for p2 = p′2 = m2 , (133)
0 = Γ

εβεβ̇Y γ
ψL
Y δ̇
ψL

ΓψLαψLδ̇

+ Γ
εβεβ̇Y γ

ψL
YψRδ

ΓψLαψδR

ΓψLαεβYφLΓY γψLε
β̇φL

+ Γ
ψLαε

β̇Y
φ

†
R

ΓY γ
ψL
εβφ†

R

− 2/pββ̇δ
γ
α . (134)

4 Applications

The general prescription for higher order calculations not
relying on an invariant regularization is:

– Calculate the necessary loop diagrams using some ar-
bitrary (preferably consistent) regularization.

– To every power-counting renormalizable interaction
there is an independent counterterm.

– For each counterterm the proper coefficient can be read
off from one of the conditions collected in Sect. 3.4.

– From the considerations in Sect. 2 we know that this
leads uniquely to a renormalized theory respecting all
defining symmetries.

In this section we show some sample calculations of renor-
malized higher order corrections using dimensional regu-
larization as defined in [2]. In particular we use {γµ, γ5} =
2ĝµνγνγ5 with ĝµµ = D − 4 and set ĝµν = 0 only in
the final results. This regularization scheme is known to
break supersymmetry. In establishing the symmetries of
the renormalized theory, the symmetry conditions we have
derived will prove to be an efficient tool, due to the com-
mon structure of most of them:

ΓABC |on shell = Γ regularized
ABC + Γ ct

ABC

= definite value. (135)

Non-supersymmetric counterterms in dimensional regu-
larization have already been calculated in the literature
[21]. The equality of the effective couplings to gauge bo-
sons and gauginos we have proven in Sect. 3 as a conse-
quence of the defining symmetry requirements was antic-
ipated there as a symmetry condition and used for the
determination of the counterterms.

4.1 Elimination of B

Although for theoretical purposes the auxiliary B field is
useful, it complicates practical calculations whenever we
are not interested in Green functions involving external
B fields. Therefore it is convenient to eliminate B by its

equation of motion. Due to the gauge condition in (44) we
can write

Γ (B,Aµ, . . .) = Γno B(Aµ, . . .) + Γwith B(B,Aµ), (136)

where the first term does not depend on B and

Γwith B(B,Aµ) =
∫
d4x
(
B∂µAµ +

ξ

2
B2
)
. (137)

The solution of the equation of motion is B = − 1
ξ (∂A) to

all orders, and one can show that the effective action

Γ̃ (Aµ, . . .) = Γno B(Aµ, . . .) + Γwith B(B = − 1
ξ (∂A), Aµ)

= Γno B(Aµ, . . .) − 1
2ξ

∫
d4x(∂µAµ)2 , (138)

where Γ̃ does not depend on B, generates the same con-
nected Green functions as Γ (B,Aµ, . . .). In the passage
from Γ to Γ̃ , the only vertex function that changes is
ΓAµAρ , which receives a longitudinal part. In the rest of
this section we always work with Γ̃ , so we drop the˜and
denote by Γ the effective action without B. This yields

pµΓAρAµ(−p, p) = −1
ξ
p2pρ (139)

instead of (112), while all other conditions in Sect. 3.4 are
unchanged.

4.2 Photon and photino self energies

The one-loop diagrams contributing to the photon and
photino self energies are depicted in Fig. 1. In terms of
the one-loop integrals defined in app. A.3, the results are
(α = e2

4π )

Γ regularized
AµAρ (−p, p) =

(−gµρp2 + pµpρ
)

×(1 +Πγ(p2)) − 1
ξ
pµpρ , (140)

Γ regularized

λ
α̇
λα

(−p, p) = /pαα̇(1 +Π γ̃(p2)) , (141)

where the one-loop corrections

Πγ(p2) = Π γ̃(p2) =
α

4π
2B0(m2,m2, p2) (142)

turn out to be equal, so the identity (91) is already sat-
isfied at the regularized level (up to the new longitudinal
part of ΓAµAρ). To renormalize we have to define counter-
terms such that the conditions (110), (111) are satisfied.
The correct choice is

Lct = δZγ(−1
4
FµνF

µν +
1
2
γ̃iγµ∂µγ̃) (143)

with

δZγ = −Πγ(0) , (144)
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Fig. 1. One-loop diagrams contributing to the photon and photino self energies

φL

γ

φL

φL φL

γ

Ψ
φLΨ

γ

Ψ
Ψ Ψ

φ

γ
Ψ

φL

φ

 φL φL

γ

 φL

Fig. 2. One-loop diagrams contributing to the electron and selectron self energies

yielding to O(α)

ΓAµAρ(−p, p) =
(−gµρp2 + pµpρ

)
×(1 +Πγ(p2) + δZγ) − 1

ξ
pµpρ, (145)

Γ
λ
α̇
λα

(−p, p) = /pαα̇(1 +Πγ + δZγ(p2)) . (146)

Note that mass and gauge fixing counterterms are not
ruled out a priori but they turn out to vanish because of
the concrete form of the regularized self energies.

4.3 Electron and selectron self energies

The one-loop contributions to the matter self energies can
be written as follows:

Γ regularized
φLφ

†
L

(p,−p) = p2 −m2 +Σφ(p2) , (147)

Γ regularized
ΨΨ

(p,−p) = /p−m+ /pΣV (p2)

−mΣS(p2) . (148)

For later purposes we also introduce the abbreviation

Σ′
Ψ (p2) = ΣV (p2) + 2m2(Σ′

V (p2) −Σ′
S(p2)) . (149)

The contributing Feynman diagrams are shown in Fig. 2
and yield3

Σφ(p2) =
α

4π
[−4m2B0(0,m2, p2)

+4(D − 4)B22(0,m2, p2)] , (150)

ΣV (p2) =
α

4π
[(D − 2)B0(0,m2, p2)

+(D − 4)B1(0,m2, p2)] , (151)

ΣS(p2) =
α

4π
[DB0(0,m2, p2)] . (152)

3 For the rest of this section we use the gauge parameter
ξ = 1.

The most general counterterms contributing to these self
energies are

Lct = δZφ(|∂µφL|2 −m2|φL|2 + (L→R))

−2mδmφ(|φL|2 + |φR|2)
+δZΨΨ(iγµ∂µ −m)Ψ − δmΨΨΨ . (153)

For each counterterm one of the conditions (116–119) ap-
plies. Expressed in terms of the quantities in Lct they
read:

Σφ(m2) − 2mδmφ = 0 , (154)

mΣV (m2) −mΣS(m2) − δmΨ = 0 , (155)
Σ′
φ(κ

2) + δZφ = 0 , (156)

Σ′
Ψ (κ2) + δZΨ = 0 , (157)

from which the coefficients of the counterterms follow im-
mediately:

δmφ =
α

4π
m
[
−2B0(0,m2,m2) − 2

3

]
, (158)

δmΨ =
α

4π
m[−2B0(0,m2,m2) + 1] , (159)

δZφ =
α

4π

[
4m2B′

0(0,m
2, κ2) − 2

3

]
, (160)

δZΨ =
α

4π
[−2B0(0,m2, κ2)

+4m2B′
0(0,m

2, κ2) + 1] , (161)

where in the finite terms the limit D → 4 has been taken.
This non-vanishing difference δmΨ − δmφ is our first

encounter of a supersymmetry-violating counterterm, nec-
essary because dimensional regularization itself breaks su-
persymmetry. It is precisely this choice for the counter-
terms that restores (116–117) and thus the equality of the
renormalized masses, a necessary consequence of super-
symmetry.

The different δZ counterterms do not correspond to a
symmetry breaking, as shown in Sect. 2.5.
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Fig. 3. One-loop vertex corrections

4.4 Photon and photino interactions with electron
and selectron

We define scalar functions containing the regularized one-
loop contributions to the photon–/photino–matter inter-
actions in the following way:

Γ regularized
φLφ

†
L
Aµ

(p,−p, 0) = ΛφφA(p2)

×(−2eQLpµ) , (162)

ū(p)Γ regularized
ΨΨAµ

(p,−p, 0)u(p) = ΛΨΨA(p2) ū(p)

×(−eQLγµ)u(p) , (163)

Γ regularized
φ†
L
Ψγ̃

(−p, p, 0)u(p) = ΛφΨγ̃(p2)

×(−
√

2eQLPL)u(p).(164)

For each of these vertex functions there is one independent
counterterm. To make the comparison with the case of
symmetric counterterms transparent we denote them by

Lct = (δZφ +
1
2
δZγ + δZφφA)ieQLAµ

×(φ†
L∂µφL − φL∂µφ

†
L) + (L→R)

(δZΨ +
1
2
δZγ + δZΨΨA)Ψ(−eQLAµγµ)Ψ

(
δZφ + δZΨ + δZγ

2
+ δZφΨγ̃)

×(−
√

2eQL)(φ†
Lγ̃PLΨ − φRγ̃PRΨ + h.c.)

(165)

According to Sect. 2.5 these counterterms are symmetric if
δZφφA = δZΨΨA = δZφΨγ̃ . Their values are determined by
the conditions (120–123). The functions Zφ, ZΨ are given
in one-loop order by

Zφ(p2) = 1 −Σ′
φ(p

2) − δZφ , (166)

ZΨ (p2) = 1 −Σ′
Ψ (p2) − δZΨ ; (167)

therefore in (120–123) the matter field renormalization
factors δZφ, δZΨ drop out and the remaining conditions
are

ΛφφA(p2) −Σ′
φ(p

2) +
1
2
δZγ + δZφφA = 0

for p2 = m2, (168)

ΛΨΨA(p2) −Σ′
Ψ (p2) +

1
2
δZγ + δZΨΨA = 0

for p2 = m2, (169)

ΛφΨγ̃(p2) − 1
2
(Σ′

φ(p
2) +Σ′

Ψ (p2)) +
1
2
δZγ + δZφΨγ̃ = 0

for p2 = m2. (170)

Again, the counterterms can be read off easily from the
corresponding conditions once the loop diagrams shown
in Fig. 3 have been calculated. Inspection of the Feynman
integrands shows that both conditions for the photon in-
teractions already hold at the regularized level, so we have
to choose

δZφφA = δZΨΨA = −1
2
δZγ . (171)

Physically these conditions express the gauge invari-
ance of the renormalized theory, and the structure of these
counterterms shows that gauge invariance is preserved by
dimensional regularization.

The one-loop correction to the photino interaction is
given by

ΛφΨγ̃(p2) =
α

4π
[B0(0,m2, p2)

+4m2(C0 + C11) + O(p2 −m2)] (172)

with Cij = Cij(0,m2,m2, p2, 0, p2), and the derivatives of
the matter self energies are

Σ′
φ(p

2) =
α

4π

[
−4m2B′

0(0,m
2, p2) +

2
3

]
, (173)

Σ′
Ψ (p2) =

α

4π
[2B0(0,m2, p2)

−4m2B′
0(0,m

2, p2) − 1] . (174)

Using B′
0 = −C0 − C11 shows that the correct choice for

the counterterm is

δZφΨγ̃ = −1
2
δZγ − 1

6
α

4π
. (175)

This result exhibits three important aspects. First, in
(170) the non-local terms cancel. This is a regularization-
independent fact due to the supersymmetry. Second, on
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the dimensionally regularized level there is a local vio-
lation of (170). This supersymmetry breaking has to be
cancelled choosing the charge counterterm δZφΨγ̃ differ-
ent from the charge counterterms for the photon interac-
tions. Physically these non-supersymmetric counterterms
lead uniquely to charge universality in the renormalized
theory as required by (120–123). Third, obviously the de-
termination of this counterterm δZφΨγ̃ is just as straight-
forward as the determination of the charge counterterms
for the photon interactions before, in spite of the super-
symmetry breaking. The reason is that the main work has
already been done in the derivation of the corresponding
symmetry condition.

The photino–matter interaction also constitutes an ex-
ample where a naive one-loop calculation can lead to a
large numerical error. Naively one might think that the
required symmetries restrict the counterterms to those of
Sect. 2.5 corresponding to field and parameter renormal-
ization. According to this line of reasoning one would ig-
nore the effects of the regularization and choose δZφΨγ̃ =
δZφφA = δZΨΨA. In this section we have shown that for
dimensional regularization this amounts to forgetting the
necessary term (− 1

6
α
4π ) and spoiling charge universality

and thus supersymmetry of the renormalized theory. Since
all contributions to ΛφΨγ̃(p2) are basically of the order
α
4π , the numerical error in the renormalized one-loop cor-
rection to the photino–electron–selectron interaction is in
general quite sizeable.

4.5 Supersymmetry transformations at one loop

The Slavnov–Taylor identity may be rewritten in the form
of an invariance relation (ϕ′

i runs over the linearly trans-
forming fields including the global ghosts, ϕi, Yi over the
non-linearly transforming fields and the corresponding ex-
ternal fields):

Γ (ϕ′
i + θsΓϕ

′
i, ϕi + θsΓϕi, Yi) = Γ (ϕ′

i, ϕi, Yi) ,(176)

where θ is an infinitesimal fermionic parameter and sΓ is
the quantum analogue to the classical BRS operator:

sΓϕ
′
i = sϕ′

i , (177)

sΓϕi =
δΓ

δYi
= 〈sΓclϕi〉J , (178)

sΓclϕi = sϕi +
δΓbil

δYi
. (179)

sΓϕi is equal to the expectation value of the composite
operator sΓclϕi in the presence of sources J = − δΓ

δϕ . Thus
sΓϕi — and equivalently the vertex functions involving
an external Yi — contain quantum corrections to the BRS
transformations. These quantum corrections can be non-
trivial but are constrained by (43), (44).

We focus now on the transformation of the electron
and selectron fields as particular examples:

sΓφL(x) = −ieQLc(x)φL(x) − iων∂νφL(x)

−
∫
d4y εβ ψLα(y) ΓψLαεβYφL (y, x)

−
∫
d4y εβ ψR

α̇(y) ΓψRα̇εβYφL
(y, x)

+ . . . , (180)
sΓψ

α
L(x) = −ieQLc(x)ψαL(x) − iων∂νψ

α
L(x)

+
∫
d4y εβ̇ φL(y) ΓφLεβ̇YψLα(y, x)

+
∫
d4y εβ φ†

R(y) Γφ†
R
εβYψLα

(y, x)

+ . . . , (181)

where the dots denote terms involving higher powers of
the fields. So the renormalized supersymmetry transfor-
mations φ ↔ ψ are governed by vertex functions of the
type ΓψεYφ and ΓφεYψ .

At one-loop order these vertex functions are given by
the Feynman diagrams displayed in Fig. 4 and by the
counterterms determined through (130–134) with Θ =
1+ α

4π (B0(0,m2, κ2)−B0(0,m2,m2)). In momentum space
the results are (B0 = B0(0,m2, p2))

ΓψLαεβYφL = −
√

2δβα
[
1 +

α

4π
B0

+
1
2

(
δZψ − δZφ − 5

3
α

4π

)]
, (182)

ΓψRα̇εβYφL
= 0 , (183)

ΓφLεβ̇YψLα = −
√

2/pβ̇αφL
[
1 − α

4π
B0

−1
2

(
δZψ − δZφ − 5

3
α

4π

)]
, (184)

Γφ†
R
εβYψLα

= −
√

2mδβα

×
[
1 +

α

4π
B0 − 1

2

(
δZψ − δZφ − 5

3
α

4π

)

+
δmφ

m
+

2
3
α

4π

]
. (185)

Again, non-invariant counterterms are necessary.
These results show that in one-loop order the super-

symmetry transformations are modified by non-local terms.
One reason for this modification is the non-linearity of the
BRS transformations permitting all the vertices involving
Y fields in Fig. 4. Another reason can be traced back to the
gauge fixing fermion F = c̄(∂µAµ + ξ

2B). Since F breaks
supersymmetry, there are terms in sΓclF involving the ε
ghosts, in particular the c̄ελ vertices appearing in three
of the graphs in Fig. 4. These supersymmetry transforma-
tions are related to physical vertex functions by identities
such as (67), (75) expressing non-trivial relations among
self energies and vertex corrections.

4.6 Summary of counterterms

We had to use non-invariant counterterms in many of the
vertex functions we calculated. However, one should note
that the separation Γct = Γsym + Γnon−inv is not unique.
The simplest expression for Γnon−inv is obtained using spe-
cial renormalization constants in Γsym as given by (54). If
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Fig. 4. One-loop contributions to the supersymmetry transformations of φL and ψL

one uses (δZφ + 2
3
α
4π ), (δZΨ − α

4π ) as field renormaliza-
tion constants instead of δZφ, δZΨ , and the mass coun-
terterm mδZm = (δmφ + 2

3
α
4π ), then the non-invariant

counterterms are confined to the matter self energies and
the photon interactions:

Γn.i. =
∫
d4x

α

4π

(
Ψ(i /D − 2m)Ψ

−2
3
|DµφL|2 + 2m2|φL|2 + (L→R)

)
. (186)

5 Conclusions

In this article we have constructed the Green functions
of SQED in the Wess–Zumino gauge from the Slavnov–
Taylor identity without referring to the existence of an
invariant scheme. The Slavnov–Taylor identity expresses
gauge invariance, supersymmetry and translational invari-
ance in a single symmetry identity. For its formulation
one has to introduce several unphysical fields, namely the
Faddeev–Popov ghost c, global ghosts ε, ε, ωµ and sources
Yi for all non-linear BRS transformations. The Slavnov–
Taylor identity is a complicated non-linear equation in-
volving Green functions with physical and unphysical
fields.

We have evaluated this identity and have derived sim-
ple symmetry conditions that resemble the normalization
conditions in their mathematical structure. These symme-
try conditions constitute exact physical statements that
are valid to all orders and express lucidly the various
aspects of the symmetries. Two important examples are
the equality of the electron and selectron masses and the
charge universality in the photon and photino interactions
with electron and selectron. These are thus proven ex-
clusively in the Wess–Zumino gauge without using super-
space methods or referring to the realization of the super-
symmetry algebra in the Hilbert space of physical states.

We have seen that in the renormalization of the one-
loop self energies and vertex corrections using DReg sev-
eral non-invariant counterterms are necessary. Still the
calculation has been just as straightforward as if we would
have relied on an invariant regularization and used only
invariant counterterms. The reason is that the symmetry
conditions may be used as an efficient tool for the prac-
tical determination of counterterms. This is particularly
important for calculations beyond one-loop order since
there the behaviour of invariant but inconsistent schemes
such as DRed is not really under control. One should note,
however, that using DRed in the 1-loop examples of this

article invariant counterterms are sufficient to renormal-
ize correctly not only the self energies and vertex correc-
tions, as is well known [5], but also the vertex functions
expressing the higher order corrections to supersymmetry
transformations.

Higher order corrections to the non-linear supersym-
metry transformations are determined in terms of vertex
functions involving external Y fields and ε ghosts and are
in general non-local. The corresponding counterterms may
be read off from appropriate symmetry conditions. As an
example we have calculated the one-loop corrections to
the supersymmetry transformations of the electron and
selectron. Via the Slavnov–Taylor identity they appear in
the relations between physical vertex functions and may
thus have also phenomenological implications.

The whole study can be generalized to supersymmet-
ric models with soft breakings and eventually to the su-
persymmetric extensions of the standard model. For the
standard model the algebraic renormalization has been
worked out in [22], soft breakings have been introduced in
[23]. Although the corresponding Slavnov–Taylor identi-
ties are more involved since they have to express not only
the symmetries but also the spontaneous or soft breaking,
their structure is the same as in SQED. So it is possible
also for these models to derive symmetry conditions which
may be exploited in practical calculations if the existence
of consistent invariant regularization schemes is question-
able.

Acknowledgements. We thank K. Sibold and G. Weiglein for
encouraging discussions.

A Conventions

A.1 Spinors

2-Spinor indices and scalar products:

εαβ = −εβα, ε12 = 1, εαβεβγ = δα γ , (187)

εα̇β̇ = −εβ̇α̇, ε1̇2̇ = 1, εα̇β̇εβ̇γ̇ = δα̇ γ̇ , (188)

ψχ = ψαχα , ψα = εαβψβ , (189)

ψχ = ψα̇χ
α̇ , ψα̇ = εα̇β̇ψ

β̇
. (190)

σ matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (191)
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σµαα̇ = (1, σk)αα̇ , σµα̇α = (1,−σk)α̇α , (192)

(σµν)α β =
i

2
(σµσν − σνσµ)α β ,

(σµν)α̇ β̇ =
i

2
(σµσν − σνσµ)α̇ β̇ . (193)

Complex conjugation:

(ψθ)† = θψ , (194)

(ψσµθ)† = θσµψ , (195)

(ψσµνθ)† = θσµνψ . (196)

Derivatives:

∂

∂θα
θβ = δα

β ,
∂

∂θα
θβ = εαγεβδδγ

δ = −δβα , (197)

∂

∂θα̇
θβ̇ = δα̇β̇ ,

∂

∂θ
α̇
θ
β̇

= εα̇γ̇ε
β̇δ̇δγ̇ δ̇ = −δβ̇ α̇ .(198)

4-Spinors: The general relations between a 4-spinor and
derivatives with respect to it are defined in such a way
that δ

δΨ Ψ = 1, δ

δΨ
Ψ = 1 :

Ψ =
(
ψα
χα̇

)
, Ψ =

(
χα ψα̇

)
, (199)

δ

δΨ
=
(

− δ

δψα
,− δ

δχα̇

)
,

δ

δΨ
=
( δ
δχα

δ

δψα̇

)
. (200)

γ matrices:

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
,

PL,R =
1 ∓ γ5

2
. (201)

A.2 Vertex functions

Vertex functions with external χ1, χ2, . . . are defined as

Γχ1χ2...(x1, x2, . . .) =
δΓ (ϕ′

i = ϕi = Yi = 0)
δχ1(x1)δχ2(x2) . . .

. (202)

The χi may be any of the physical fields, ghosts, or Y
fields. For χi being one of the global ghosts it is understood
that there is no corresponding xi argument, and that the
functional derivative reduces to a partial derivative.

The sign of the momenta in Fourier transforms is de-
fined in such a way that momenta are always diagrammat-
ically incoming. The Fourier transform of vertex functions

thus involves the opposite sign for the momenta, as com-
pared to the fields:

χ(x) =
∫

d4p

(2π)4
e−ipxχ(p) , (203)

(2πδ)4(p1 + . . .)Γχ1...(p1, . . .)

=
∫
d4x1 . . . e

−i(p1x1+...)Γχ1...(x1, . . .) . (204)

A.3 One-loop integrals

We use the following one-loop two- and three-point func-
tions [24]:

B{0,µ,µν} =
∫ {1, kµ, kµkν}

[k2 −m2
0][(k + p1)2 −m2

1]
, (205)

C{0,µ} = (206)∫ {1, kµ}
[k2 −m2

0][(k + p1)2 −m2
1][(k + p1 + p2)2 −m2

2]

with ∫
→ µ4−D 16π2

i

∫
dDk

(2π)D
(207)

and the tensor decomposition

Bµ = p1µB1 , (208)

Bµν = p1µp1νB21 + gµνB22 , (209)

Cµ = p1µC11 + p2µC12 , (210)

Bij = Bij(m2
0,m

2
1, p

2
1) , (211)

Cij = Cij(m2
0,m

2
1,m

2
2, p

2
1, p

2
2, (p1 + p2)2) (212)

in the conventions of [25].
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